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ABSTRACT

MSCs are known as multipotent mesenchymal stem cells that have been found capable of dif-

ferentiating into various lineages including cartilage. However, recent studies suggest MSCs are

pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage

repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs

stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase

I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with

10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects

in 35 patients. No treatment-related serious adverse events were found and statistically signifi-

cant improvement in clinical outcome shown. Magnetic resonance imaging and second-look

arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center

of the repair tissue was found to have hyaline-like features with a high concentration of proteo-

glycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the

regenerated tissue contained patient-DNA only. These findings support the hypothesis that allo-

geneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm

shift in which MSCs are applied as augmentations or “signaling cells” rather than differentiating

stem cells and opens doors for other applications. STEM CELLS 2017;35:1984–1993

SIGNIFICANCE STATEMENT

This study demonstrates the safety and efficacy of allogeneic MSCs for human use and

one-stage cartilage regeneration which could lead to a cost-effective approach when compared

with the current cellular cartilage repair therapy. It suggests that rather than differentiating

cells that integrate in the host tissue, MSCs stimulate the patient’s own cells to fill the defect

and function more as stimulatory (trophic) factors.

INTRODUCTION

MSCs are known as multipotent mesenchymal

stromal or stem cells. With this terminology, sci-

entists describe the nonhematopoietic adult cell

population that is present in various tissues such

as bone marrow, adipose tissue, synovial mem-

brane, and others. Their stem cell-like behavior

with the capability to differentiate into different

lineages of mesenchymal tissues in vitro has

given rise to a new era in regenerative medicine,

which aimed at regenerating tissues and organs

through stem cell differentiation [1]. In the field

of articular cartilage tissue engineering, success-

ful regeneration using cultured autologous MSCs

has been shown in vitro as well as in various

small and large animal models [2]. A limited num-

ber of clinical trials have been reported that used

autologous bone marrow- or adipose tissue-

derived MSCs [3].While clinical improvement has

been shown, no studies have been able to evalu-

ate the cell mechanisms or fate of these MSCs in

vivo. The rational of using allogeneic MSCs is that

the need for ex vivo autologous cell expansion

would become redundant, allowing cell selection

and cost effective treatment strategies. This is

especially relevant, as the use of autologous cells

requires a cell expansion procedure and two sep-

arate procedures. These two-stage procedures

known as autologous chondrocyte implantation

(ACI) have been shown to provide durable clinical

improvement in randomized trials in patients

with large (> 2 cm2) articular cartilage defects [4,

5]. Indeed, since its initial description in the New

England Journal of Medicine in 1994, this tech-

nique led to the first approved advanced therapy
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medicinal product (ATMP) under European Union regulation [6].

Even today, variants of this technique are being introduced, most

recently with use of a nasal biopsy to circumvent the need for an

autologous cartilage harvest in the knee [7]. However, strict regu-

lations, high costs, and complex logistics associated with ex vivo

expansion for subsequent human implantation restrict the wide-

spread availability of ACI [8]. While less complex surgery such as

bone marrow stimulation (microfracture) is a good option for

some patients, orthopedic surgeons are increasingly faced with

complex patients seeking treatment for large cartilage lesions,

frequently with a history of failed marrow stimulation treatment.

To achieve the required tissue regeneration and clinical effect

with a relatively incomprehensible cell type such as the MSC, it is

of importance to understand the behavior of these cells in a clini-

cal application. For example, while allogeneic MSCs have been

found to show functional benefits from several weeks to 3

months in fracture healing [9] and myocardial infarction in animal

models [10, 11], these cells seemed to disappear over time [11].

In humans, the cell fate of allogeneic MSCs remains unclear.

Recently, it has been suggested that instead of differentiating

into the desired tissue, MSCs are pericytes that can sense the

microenvironment of the injury site and secrete site-specific fac-

tors that have reparative functions [12]. In addition to excreting

these site-specific factors, MSCs have been found to have anti-

inflammatory and immunomodulatory effects [13]. In fact, sev-

eral clinical trials have been conducted that use of allogeneic

MSCs for their immunosuppressive role [14]. The use of alloge-

neic MSCs is especially interesting, since their use allows for one-

stage off-the-shelf application, limiting complexity, and costs.

Previously, we have shown safety and efficacy in a preclini-

cal (compared with microfracture) [15] and early clinical (pilot)

[16] study using the investigator driven Instant MSC Product

accompanying Autologous Chondron Transplantation (IMPACT,

NCT02037204). This study provides the comprehensive descrip-

tion of the completed first-in-man trial in 35 patients with 18

months follow-up.

MATERIALS AND METHODS

Study Design and Objectives

This was an investigator driven academically funded phase I/II

prospective monocenter study, investigating the feasibility and

safety of a new ATMP for large isolated articular cartilage

defects in 35 patients. The primary objective of this study was

aimed at investigating clinical safety and feasibility of combining

allogeneic MSCs and recycled defect derived chondrons, that is,

IMPACT. The other objectives were: (a) to evaluate the fate

of the implanted allogeneic MSCs, (b) to measure the level of

clinical improvement, and (c) to evaluate parameters that may

be indicative of structural articular joint surface repair.

Study Enrollment and in- and Exclusion Criteria

Patients were assessed for eligibility at the Department of

Orthopedics, Mobility Clinic, an academic expert center for

regenerative therapies and sports medicine at the University

Medical Center Utrecht. The inclusion criteria were: patients

(18–45 years of age) with a symptomatic isolated full-thickness

cartilage defect of 2 to 8 cm2 in the femoral condyle or trochlea,

with at least 50% of functional meniscus and a stable, well

aligned knee. Exclusion criteria were: signs of osteoarthritis on

X-ray, concomitant diseases that may have affected the joint

(e.g., rheumatoid arthritis), malalignment of the knee requiring

correction osteotomy, previous surgeries in the affected knee 6

months before inclusion, (possible) pregnancy or breast feeding,

and anxiety for magnetic resonance imaging (MRI) or needles.

Surgical Procedure and ATMP Manufacturing Process

Surgery was performed through a mini-arthrotomy of the knee.

Cartilage defects were debrided as described for traditional car-

tilage repair surgery carefully removing the calcified cartilage

layer and creating stable rims. The knees were temporarily

closed with a sterile dressing. The resulting debrided cartilage

tissue was recycled using a rapid enzymatic isolation protocol to

obtain 100,000–400,0000 chondrons (chondrocytes with their

pericellular matrix), as counted using 3% acetic acid with methy-

lene blue. Allogeneic cryopreserved passage 3 bone marrow-

derived MSCs, classified as ATMPs and manufactured in the

GMP-licensed Cell Therapy Facility of the University Medical

Center Utrecht were obtained from healthy donors as approved

by the Central Committee on Research Involving Human Sub-

jects (CCMO) (Biobanking bone marrow for MSC expansion,

NL41015.041.12) [17, 18]. These MSCs were isolated from

surplus bone marrow from two patients (age 2 and 5 years) orig-

inally obtained during general anesthesia aimed at hematopoi-

etic stem cell transplantation. Consent of parents or legal

guardians was given as approved by the CCMO. The bone mar-

row aspirates were density separated, and MSCs were isolated

by plastic adherence as described previously [16] Cell viability

and fulfillment of the release criteria of MSCs were assessed

according to the European Pharmacopeia and in accordance

with the criteria as described by Dominici et al. [19]. After

thawing, MSCs were washed in 0.9% sodium chloride/10%

human serum albumin with a concentration of dimethyl

sulfoxide< 0.001% in the end product. Autologous chondrons

and allogeneic MSCs were combined in a 10:90 ratio (standard

yield) or 20:80 ratio (high yield), depending on the amount of

chondrons isolated [15, 16]. Cells were suspended in fibrin glue

(Beriplast, CSL Behring) using 1.5–2 million cells per milliliter.

After approximately 90 minutes, the knee was reopened and

the cells implanted using the fibrin glue carrier. Approximately

0.9 ml cell product per square centimeter defect was implanted.

The knee was put through a manual range of motion test during

surgery to ensure adherence of the IMPACT implant before the

knee was closed in layers. The procedure is illustrated in this

animation (https://www.youtube.com/watch?v5S3rIBjA03AA).

Rehabilitation

All patients were dismissed 1 day after surgery and followed the

same standardized phased rehabilitation protocol supervised by

their own physiotherapist and adjusted to individual goals [16,

20]. All patients were non weight bearing for 3 weeks with a

gradual increase to full weight bearing at 9 weeks. Progression

was monitored by a central study physiotherapist. High impact

sports were not allowed for 9 months.

Follow-up

Adverse Events and Safety Assessment. All patients were

monitored for inflammation and signs of a foreign body

response by an independent physician (rheumatologist) using

standardized clinical measures, pain assessment by numeric

rating scale (NRS) for pain and blood analysis including serum

de Windt, Vonk, Slaper-Cortenbach et al. 1985
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C-reactive protein (CRP), erythrocyte sedimentation rate (ESR),

and leukocyte count. A data safety monitoring board (DSMB)

was assembled in agreement with the CCMO and included an

orthopedic surgeon, a professor in experimental rheumatology,

and a statistician. The DSMB periodically reviewed all patient

data and made recommendations concerning the continuation,

modification, or termination of the trial.

Patient Reported Outcome. All patients completed patient

reported outcome measures including the Knee injury and Oste-

oarthritis Outcome Scoring (KOOS), the visual analogue scale

(VAS) for pain and the EuroQoL 5-Dimension Health Question-

naire (EQ5D) at baseline (before IMPACT therapy), and at 3, 6,

12, and 18 months follow-up. The KOOS has been validated to

assess the clinical improvement after cartilage regeneration

[21]. The EQ5D is a widely used health-related quality of life

(QoL) measure that contains five domains, namely, mobility,

self-care, usual activities, pain/discomfort, and anxiety/

depression and includes a VAS for overall health [22]. It has

been shown to be applicable to, and valid for, a wide range of

health conditions and treatments [23–25].

Magnetic Resonance Imaging

A baseline and follow-up MRI scan (12 months) was used after

surgery to assess structural repair. All MRI scans were per-

formed on a 3-T clinical magnetic resonance (MR) scanner using

a 12 channel dedicated knee coil (Achieva, Philips Healthcare,

Best, the Netherlands). Morphological images were acquired in

both coronal and sagittal plane using a fat suppressed (Spectral

Presaturation with Inversion Recovery) Proton Density weighted

sequence (PDW SPIR). For quantitative analysis, a T1rho

sequence was obtained in sagittal plane [26]. The imaging

parameters for PDW SPIR sequence were: repetition time (TR)/

echo time (TE)5 3,860/34 ms, flip angle5 90 deg, field of view

(FOV)5 160 mm, slice thickness5 2.7 mm, matrix size5

512 3 512. The imaging parameters for the 2D T1rho sequence

were: TR/TE5 5.3/2.8 microseconds, flip angle5 10 deg,

FOV5 140 mm, slice thickness5 4 mm, matrix size5

256 3 256, spin-lock pulse duration (TSL)5 0, 10, 20, 30, and

40. For quantitative analysis, T1rho values were calculated for

the regenerated cartilage (RC) and the adjacent healthy carti-

lage (HC) pre- and postoperatively. To standardize T1rho values,

RC and HC (RC/HC) ratios were obtained. T1rho ratios were cor-

related to KOOS and VAS pain scores using Pearson’s

correlation.

Second-Look Arthroscopy

Patients were asked consent to perform a second-look arthroscopy

1 year after surgery and were asked permission to take a biopsy

from the center of the repair tissue. The International Cartilage

Repair Society (ICRS) macroscopic evaluation system of cartilage

repair was used to evaluate the macroscopic appearance of the

repair tissue and degree of defect repair and integration with sur-

rounding native tissue [27, 28]. A 2-mm diameter full-thickness

biopsy was taken from the centre of the repair tissue. A small piece

of the cartilage part of the biopsy was processed for DNA analyses,

the remaining full-thickness part (cartilage and bone) was formalin-

fixed and paraffin-embedded for (immuno) histological analyses.

Histological Analysis

Histological analyses were performed on 5 lM sections of

full-tickness formalin-fixed paraffin-embedded biopsies [16].

Briefly, general morphology and proteoglycan deposition

were assessed using a Safranin-O staining (0.125% Safranin-O

(Merck, Germany counterstained with Weigert’s hematoxylin

[Klinipath, the Netherlands] and 0.4% fast green [Merck]).

Collagen deposition was determined using types I and II

collagen immunostainings (rabbit-anti human type I collagen,

1/400 dilution in phosphate-buffered saline (PBS)/bovine

serum albumin (BSA)-5%, AB138492, Abcam, Cambridge, UK;

mouse-anti human type II collagen, II-II6B3, 1/100 dilution in

PBS-BSA-5%; Developmental Studies, Hybridoma Bank;

horseradish peroxidase-conjugated anti-mouse secondary

antibody (1/100 dilution in PBS-BSA-5%), visualized using

3,30-diaminobenzidine (Sigma-Aldrich). All samples were

processed and stained using the exact same procedure

(e.g., color baths). Samples were scored using the ICRS II

histological scoring system [29, 30]. Isotype controls for types

II and I collagen immunostainings are provided in Supporting

Information Figure S1.

STR Analysis

Genomic DNA was isolated from three relevant sources: the

cartilage part of the 1-year central repair tissue biopsies,

the recycled autologous chondrons or blood from the

patients and from the donor MSCs. The loci D2S1360,

D7S1517, D8S1132, D9S1118, D10S2325, D11S554, D12S391,

MYCL, P450CYP19, and SE33 were amplified and sequenced

[27], and specific alleles for donors and patients were deter-

mined. To identify the cellular composition, the lengths of

the short tandem repeat (STR) amplicons found in the

repair tissue biopsies were compared with the lengths of

the amplicons measured from the MSC donors and the

recipient patients. The amount of DNA present for each

donor and patient in the genomic DNA isolated from

the biopsy was calculated from the areas of the electrophe-

rogram from which the ratio between two cell types could

be calculated.

Statistical Analysis

Predefined statistical analyses were performed with SPSS

version 21.0 (IBM, Chicago, IL). A repeated-measures analysis of

variance was used to test for differences in clinical outcome

between baseline and 3, 6, and 12 months after surgery, an

independent samples t test was used to test for differences in

outcome between the standard and high yield. A clinical

immune/rheumatologist independent of the design and surgical

treatment team performed the clinical monitoring. The MRI and

histological (ICRS II) grading were performed by two indepen-

dent observers blinded for patient demographics and clinical

outcome scores.

RESULTS

Baseline Characteristics

The mean age of the 35 patients (24 males, 11 females) was

306 8 years. Articular cartilage defects were located on the medial

femoral condyle (n5 17), lateral femoral condyle (n5 12), and

1986 Allogeneic MSCs Augment One-Stage Cartilage Repair
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trochlea (n5 6). The mean defect size was 3.26 0.7 cm2. Previous

surgeries were performed in 20 patients. These included partial

meniscectomy (n5 6), debridement (n5 4), and bone marrow

stimulation by microfracture (n5 10). Seventeen patients received

the 10:90 and 18 patients the 20:80 cellular mixture. No difference

in demographic data was found between the high and low yield

group, respectively. The demographics and baseline characteristics

are presented in Table 1.

Adverse Events and Safety Assessment

No signs of a foreign body response were identified by the inde-

pendent rheumatologist. An increase in serum CRP levels 1 day

after surgery was seen in all patients, typical for a post-surgical

procedure response. One week postoperatively, the CRP levels

were decreased to normal levels (Fig. 1A). The serum ESR and leu-

kocyte count were low and remained stable over the study time

points (Fig. 1B, 1C). Two patients showed an increase in serum

CRP levels in the first weeks after treatment without signs of a

foreign body response. After 1 week, both values were normal-

ized (Fig. 1A). The NRS for pain decreased 1 week postoperatively

and remained low compared with baseline (p< .0001) (Fig. 1D).

No suspected unexpected serious adverse reaction were found

and no re-interventions were performed. After each meeting

with the DSMB, study continuation was advised. Adverse events

included post-surgery and rehabilitation symptoms without con-

cerns for a disproportional host response (Table 2).

Clinical Outcome

The mean improvement in the Knee injury and Osteoarthritis

Outcome Score (KOOS) showed a gradual positive change from

Table 1. Summary of the demographics and baseline characteris-
tics (n5 10)

Characteristic

Mean age in years (SD) 30 (8)
Male (n) 24
Mean length (m) 1�79 (0�1)
Mean weight (kg) 79�9 (12)
Previous knee surgery n5 0 (n) 15
Previous knee surgery n5 1 (n) 12
Previous knee surgery n5 2 (n) 5
Previous knee surgery n5 3 (n) 3
Defect size postdebridement (cm2) (SD) 3�2 (0�7)
Defect location
Medial femoral condyle 17
Lateral femoral condyle 12
Trochlea 6
Standard yield IMPACT treatment (n) 17
High yield IMPACT treatment (n) 18
Concomitant defect treated during surgery (n) 0
Concomitant meniscal damage (n) 2

Abbreviation: IMPACT, Instant MSC Product accompanying Autologous
Chondron Transplantation.

Figure 1. Safety assessment. Box-plots showing serum levels of C-reactive protein (A), erythrocyte sedimentation rate (B), leukocyte
count (C), and numeric rating scale for pain (D) at day 1 and 1, 2, 4, and 6 weeks after surgery. Outliers are shown by x. (n5 35).
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baseline to 18 months with the largest effect at 3 months

follow-up for all subscores. The mean overall KOOS showed an

improvement from 57.96 16.1 to 76.66 11.1 (p< .0001) at 3

months and 85.46 13.3 (p< .0001) at 18 months follow-up.

Statistically significant improvement (p< .000002) in all sub-

scales was seen with the biggest effect in the Sports and Recrea-

tion subscale (mean baseline score: 32.36 22.3, mean 18

month score: 73.26 24.1) (p5 .00000001). No significant differ-

ence in KOOS clinical outcome scores (p5 .94) and VAS pain

scores (p5 .58) were found between the standard yield and

high yield groups. All patients showed a statistically significant

reduction in mean VAS pain score from baseline (45.36 24.2) to

18 months after surgery (9.76 15.4 [p< .00000001]). The clini-

cal outcome scores are presented in Figure 2.

Magnetic Resonance Imaging

MRI scans indicated complete filling of the defect, integration

with the host tissue, and attachment to the subchondral bone

at 12 months compared with baseline. Worst, mean, and best

proton density (PD) images (n5 35) are provided in Support-

ing Information Figure S2. The mean T1rho values were

43.16 6.9 for HC and 47.96 13.5 for RC 12 months after

surgery. There was no significance difference between T1rho

values of the RC and HC at 12 months (mean difference

T1rho; 4�76 11�3, CI: 0�57–8.9, p> .05). An example of a

T1rho map and the T1rho values are presented in Figure 3A,

3B, respectively. Correlation analysis showed a moderate cor-

relation (R520.46, p< .05) between T1rho RC/HC ratio and

VAS pain 12 months after surgery and no correlation with the

KOOS (p> .05).

Second-Look Arthroscopy

A second-look arthroscopy at 12 months follow-up was per-

formed in 33 patients, two patients did not give their con-

sent. The defects were filled with repair tissue which showed

good integration with the native tissue. Each graft was manip-

ulated with an arthroscopic probe and showed no signs of

loosening. (Supporting Information Video). The repair tissue of

was grade I (normal tissue) in the majority of patients

(n5 22) and grade II (nearly normal tissue) in 11 patients as

scored by macroscopic ICRS score.

Histology

A total of 32 biopsies could be used for histological analysis.

The repair tissue was rich in proteoglycans as shown by

Safranin-O staining on the biopsies (Fig. 4). Both types I and II

collagen were deposited in the repair tissue, but the intensity

for type II collagen was stronger compared with type I colla-

gen (Fig. 4). The ICRS II histological scores for the observers

were good with a mean overall score of 70 (614�3) (Table 3).

The ICRS II scores, along with the defect size and cell ratios

are provided in Table 3. Four cases were selected based on

their ICRS II scores (worst to best, Table 3). The corresponding

macroscopic images and histological stainings are presented

in Figure 4. Supporting Information Table presents all ICRS II

scores along with the description of the subscales. Two biop-

sies showed patches of proteoglycans as indicated by

Safranin-O and mainly type I collagen immunostaining instead

of type II collagen. All other biopsies showed a stronger type

II collagen immunostaining. No correlation was found

Table 2. Treatment-related adverse events

Adverse event n

Patients with at least one adverse event 46
Post-surgery (24 hours)
Nausea and vomiting 6
Urinary retention 2
Other (e.g., headache, vasovagal episode, etc) 10
Musculoskeletal
Arthralgia 13
Joint swelling 8
Crepitations 5
Increased serum CRP levels 2
Giving way sensation 1
Second lesion (incidental finding

second-look arthroscopy)
1

Total 48

Abbreviation: CRP, C-reactive protein.

Figure 2. Clinical outcome scores. Patient reported outcome scores: the Knee injury and Osteoarthritis Outcome Score (KOOS) (A), sub-
scales for pain, symptom, activities of daily living, sport, and recreation (sport/rec), quality of life and overall score, and visual analogue
scale for pain (B) from preoperative (preop, n5 35) to 3 (n5 35), 6 (n5 34), 12 (n5 35), and 18 (n5 33) months post-surgery. Data is
presented as mean6 SD. ***, p< .001 compared with preoperative. Abbreviations: ADL, activities of daily living; KOOS, Knee injury and
Osteoarthritis Outcome Scoring; QOL, quality of life; VAS, visual analogue scale.

1988 Allogeneic MSCs Augment One-Stage Cartilage Repair
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Figure 3. Biochemical MRI (T1rho) imaging. (A): T1rho values for femoral cartilage segmentation are superimposed on pre- and post-
operative anatomical magnetic resonance imaging (Proton Density weighted sequence Spectral Presaturation with Inversion Recovery)
images (n5 35). The color bar shows the range of T1rho values with low values indicating healthy cartilage (HC). (B): Mean T1rho values
at the cartilage defect site pre- and postoperatively compared with adjacent HC. There was no significant difference in Th1rho value
between the repaired tissue and adjacent HC 12 months after surgery.

de Windt, Vonk, Slaper-Cortenbach et al. 1989
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between the ICRS II histological scores and defect sizes or the

percentages of chondrons.

STR Analysis

At least seven loci could be used to define the origin of the

genomic DNA from the biopsies. For both the 17 patients

treated with the standard yield (10:90 ratio) and 18 patients

treated with the high yield ratio (20:80), the biopsies con-

tained only autologous DNA. Thus, no DNA of the allogeneic

MSCs could be detected at the detection limit of the assay

(1 in 100,000 cells).

DISCUSSION

This is the first study showing safety and efficacy of the proof

of concept that allogeneic MSCs augment one-stage articular

cartilage repair. It demonstrates that a cartilage cell therapy

using rapidly isolated autologous chondrons recycled from the

rim of the cartilage defect combined with allogeneic human

bone marrow-derived MSCs is feasible, safe, and allows for

improvement of clinical outcome and tissue repair. Using DNA

analysis, this study provides evidence that MSCs do not

engraft in the host tissue as previously suggested by others

[28]. The biopsy was taken from the center of the repair tis-

sue in each defect. Cells were homogeneously mixed and

implanted as uniform suspensions. However, it cannot be

excluded that a sampling error could play a role in our results.

It could also be that a non- detectable immune response

removed the MSCs from the joint. In a small animal myocar-

dial infarction model, allogeneic MSCs have been suggested

to differentiate and evoke an immune response, while still

giving functional benefits [11]. Microarray assays and enzyme

linked immunosorbent assays identified multiple protective

factors that were expressed and excreted by the MSCs [11].

The question rises, however, whether reimplantation of

allogeneic MSCs for tissue repair strategies will activate a

memory T-cell response. Still, it seems most likely that

MSCs influence joint homeostasis by evoking a temporary

stimulatory response before disappearing from site [31] Again,

it seems safe to presume that if the allogeneic MSCs still

played a role in the final tissue formation, we would have

identified donor DNA as assessed by the many STR repeats at

the detection level of 1/100,000 cells. Eighteen months after

surgery, no symptoms were identified that would indicate

MSC engraftment at different sites such as the bone marrow,

lungs, or liver. Although this has been described previously

for small animal models, microchimerism and unwanted

migratory behavior from the sparsely vascularized joint seems

unlikely, but cannot be ruled out completely [32] Neverthe-

less, our study and other trials exploring the use of allogeneic

MSCs found no sign of such events [2]. Our in vitro studies

on cocultures of chondrocytes and MSCs have shown that

even without immune cells present, MSCs disappear from the

cultures while chondrocytes proliferate [33]. Cell–cell contact

was one of the primary indicators for tissue regeneration.

Others have also shown a trophic or signaling role of MSCs,

both in an immunomodulatory and regenerative role [34].

This is in contrast to the more traditional view on MSCs as

stem cells with multipotent differentiation capacity [12]. While

here it seems likely that MSCs have a signaling or trophic role

in vivo, a cell tracking and real time trophic factor analysis

would be necessary to confirm this hypothesis.

The results of this study indicate that using a mixture of

autologous and allogeneic cells is feasible and could be a safe

efficient and more cost effective strategy. Such a one-stage

procedure, with “off-the-shelf” use of allogeneic MSCs would

have major benefits for patients, payers and providers alike as

they would not need two separate surgical treatments. In

addition, patients can start rehabilitation immediately follow-

ing surgery, instead of having to wait on a cell expansion

period. Other strategies for a combined one-stage cell therapy

would lie in a combination of autologous cartilage cells com-

bined with enriched stem cell products such as bone marrow

concentrate, the mononuclear fraction of bone marrow or

Figure 4. Histolofical analysis. Safranin-O proteoglycan staining (best, mean, worst), and types II and I collagen immunostaining (Coll II
and I) on biopsies (n5 32) from the centre of the repair tissue 12 months after surgery, with the subchondral bone on the left side and
cartilage surface on the right. Four cases were selected based on the worst to best (left to right) International Cartilage Repair Society II
histological outcome scores as presented in Table 3. Scale bar5 400 mm. Abbreviations: Coll, collagen; Saf O, Safranin-O.
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vascular stromal fraction of adipose tissue. However, if the sole

function of the MSCs is to provide stimulatory factors, it can

be suggested that a higher amount of MSCs might be more

beneficial compared with enriched products. More studies are

needed to confirm this. The advantage in terms of tissue

regeneration of using freshly isolated chondrons instead of

expanded chondrocytes has been shown previously [35] Here,

the improvement in tissue regeneration and interaction with

MSCs is attributable to the intact pericellular matrix, which is

lost to the utmost extent during cellular expansion [36, 37]. An

additional advantage of using recycled chondrons is that donor-

site morbidity is prevented [38] Furthermore, their regenerative

capacity compared with non-weight bearing HC has been

shown [39] A first-in-man trial just recently published in the

Lancet used the nasal septum as a cell-source for cartilage

repair treatment [7]. While this study neatly circumvents

donor-site morbidity to the knee, the limits of a complex cell

expansion procedure with the patient needing to undergo two

separate procedures separated by several weeks are a cause

for concern. Again, a cost-effective single-stage cell-based pro-

cedure allowing treatment of large and complex cartilage

lesions would be an innovation of value for the growing

patient population and field of regenerative medicine [8].

As we have demonstrated safety and feasibility of the cur-

rent approach, we can now make predictions on clinical effi-

cacy that allow for power calculations for a Phase III/IV trial.

In the future, a randomized approach compared with a con-

servative treatment group or a relevant comparator will be of

interest. This is underlined by the consistent statistically signif-

icant improvement found in clinical outcome as well as the

correlation shown between pain and the biochemical (MRI)

quality of the repair tissue. However, further research into

the value of T1rho assessment of cartilage repair tissue is

warranted as the sample size is small, and correlation

between MRI and clinical outcome after cartilage repair has

been proven difficult to, although it seems biochemical imag-

ing is more promising in its predictive value compared with

morphological imaging [40, 41].

Our previous in vitro and in vivo studies, have shown an

advantage of using a combination of chondrons and MSCs

when compared with chondrons or MSCs alone, making it

unlikely the same results would be achieved with the limited

available autologous chondrons isolated [15, 33]. Others have

consistently corroborated the advantage of combining chon-

drocytes and MSCs compared with chondrocytes alone [42].

In this study, structural evaluation after 12 months using

both biochemical MRI scans and second-look arthroscopies

showed hyaline cartilage-like tissue repair with good integra-

tion with the native tissue. The quality of the repair tissue

was found to be similar or even superior to the histological

results shown after ACI, with only two biopsies showing

mainly fibrocartilage (mainly type I collagen), while these

patients were found to strongly improve in clinical outcome

scores [29, 43]. Our results confirm a positive effect on short-

term cost-effectiveness compared with ACI as we have previ-

ously modeled in an early health technology assessment [44].

Especially, since we found non-inferior and even superior clini-

cal outcome compared with ACI and mirofracture in compari-

son with previous randomized controlled trials [45, 46].

Ongoing work aims at designing a (closed) system with

shorter treatment times allowing broader availability and

improved efficiency. The underlying cellular mechanisms as

well as the comparison with current or developing technolo-

gies should be explored in future clinical trials that investigate

the regenerative or augmentative capacity of MSCs.

CONCLUSION

The findings of this unique first-in-man study demonstrate

that allogeneic MSCs can be a safe cell source to augment or

facilitate tissue regeneration in a clinical setting. Instead of

engraftment or differentiation as previously suggested, alloge-

neic MSCs seem to stimulate tissue regeneration through

paracrine mechanisms and cellular communication.
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20 2.0 20: 80 100: 0 78
21 3.5 10: 90 100: 0 79
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