Accepted Manuscript

Comparative Effectiveness of Platelet-Rich Plasma Injections for Treating Knee Joint Cartilage Degenerative Pathology: A Systematic Review and Meta-analysis

Ke-Vin Chang, MD Chen-Yu Hung, MD Fanny Aliwarga, MD Tyng-Guey Wang, MD Der-Sheng Han, MD, PhD Wen-Shiang Chen, MD, PhD

PII: S0003-9993(13)01212-4

DOI: 10.1016/j.apmr.2013.11.006

Reference: YAPMR 55664

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

- Received Date: 15 September 2013
- Revised Date: 16 November 2013

Accepted Date: 18 November 2013

Please cite this article as: Chang K-V, Hung C-Y, Aliwarga F, Wang T-G, Han D-S, Chen W-S, Comparative Effectiveness of Platelet-Rich Plasma Injections for Treating Knee Joint Cartilage Degenerative Pathology: A Systematic Review and Meta-analysis, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2013), doi: 10.1016/j.apmr.2013.11.006.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Comparative Effectiveness of Platelet-Rich Plasma Injections for Treating Knee Joint Cartilage Degenerative Pathology: A Systematic Review and Meta-analysis Ke-Vin Chang, MD^{1,2}, Chen-Yu Hung, MD³, Fanny Aliwarga, MD⁴, Tyng-Guey Wang, MD³, Der-Sheng Han MD, PhD¹, Wen-Shiang Chen, MD, PhD³

Current affiliations:

¹Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, BeiHu Branch and National Taiwan University College of Medicine, Taipei, Taiwan; ²Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan; ³Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; ⁴Department of Physical Medicine and Rehabilitation, Eka Hospital, Tangerang, Indonesia

Correspondence and reprint requests:

Wen-Shiang Chen, MD, PhD, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine

Email: wenshiang@gmail.com

Running title: PRP injections for cartilage degenerative pathology of knee

Word count: abstract: 236; main text: 3380

Conflict of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Financial Statement

We certify that no party having a direct interest in the results of the research

supporting this article has or will confer a benefit on us or on any organization with which we are associated AND, if applicable, we certify that all financial and material support for this research (eg, NIH or NHS grants) and work are clearly identified in

the title page of the manuscript.

Acknowledgement

This research was supported by grants from the National Science Council

(100-2314-B-002-012-MY3).

- 1 Comparative Effectiveness of Platelet-Rich Plasma Injections for Treating Knee
- 2 Joint Cartilage Degenerative Pathology: A Systematic Review and Meta-analysis
- 3
- 4 **Running title:** PRP injections for cartilage degenerative pathology of knee

5 Abstract

6 Objective	: To explore the	e effectiveness of	platelet-rich	plasma (PRP)	in treating
--------------------	------------------	--------------------	---------------	--------------	-------------

- 7 cartilage degenerative pathology in knee joints.
- 8 Data Sources: Electronic databases, including PubMed and Scopus, were searched
- 9 from the earliest record to September 2013.
- 10 Study Selection: We included single-arm prospective studies, quasi-experimental,
- 11 and randomized controlled trials that employed PRP to treat knee chondral
- 12 degenerative lesions. Eight single-arm studies, 3 quasi-experimental, and 5
- 13 randomized controlled trials were identified, comprising 1543 participants.
- 14 **Data Extraction:** We determined effect sizes for the selected studies by extracting
- 15 changes in functional scales following the interventions and compared the PRP group
- 16 pooled values with the pre-treatment baseline and the groups receiving placebo or
- 17 hyaluronic acid (HA) injections.

Data Synthesis: PRP injections in patients with knee degenerative pathology showed continual efficacy for 12 months compared with their pre-treatment condition. The effectiveness of PRP was likely better and more prolonged than HA. Injection doses equal to or less than 2, the use of a single-spinning approach, and lack of additional activators led to an uncertainty in the treatment effects. Patients with lower degrees of

23 cartilage degeneration achieved superior outcomes as opposed to those affected by

- 24 advanced osteoarthritis.
- 25 **Conclusions**: PRP application improves function from basal evaluations in patients
- 26 with knee joint cartilage degenerative pathology and tends to be more effective than
- 27 HA administration. Discrepancy in the degenerative severity modifies the treatment
- 28 responses, leading to participants with lower degrees of degeneration to benefit more
- 29 from PRP injections.
- 30 Keywords: platelet-rich plasma, osteoarthritis, cartilage, knee
- 31 List of Abbreviations: PRP: platelet-rich plasma; HA: hyaluronic acid; OA:
- 32 osteoarthritis

33	The knee is the most common joint in the lower extremity affected by cartilage
34	degeneration with severity ranging from degenerative chondropathy to advanced
35	osteoarthritis (OA). The progression of articular chondral lesions results in pain,
36	stiffness, swelling, and restricted joint motion, leading to serious impacts on the
37	quality of life and social-economic wellbeing. ¹ A variety of pain relieving oral
38	medications are available and appear effective in the early disease stages, including
39	acetaminophen, non-steroidal anti-inflammatory drugs, and weak opioid analogues. ²
40	Injection therapies are usually reserved for patients with unsatisfactory responses to
41	oral regimens. ^{3, 4} Intra-articular corticosteroid injections have been widely used in the
42	management of symptomatic knee OA, but their effectiveness seems to be limited to
43	one month. ⁵ Synthetic hyaluronic acid (HA), whose natural form is present in healthy
44	joint fluid, has been employed against knee OA for decades based on the theoretical
45	benefits of viscosupplementation and modulation of inflammatory reactions. Although
46	an antecedent meta-analysis disclosed the superiority of HA over corticosteroids in
47	terms of longer efficacy, a recent large scaled meta-analysis discouraged the use of
48	viscosupplementation due to a clinically irrelevant advantage and an increased risk of
49	serious adverse events following HA injections. ⁶

50

51 Platelet-rich plasma (PRP), a natural concentrate of autologous growth factors

52	from the blood, is an emerging regenerative therapy against tissue injury and
53	degeneration. ⁷ Degranulation of platelets causes the release of various growth factors
54	and cytokines, which play a crucial role in joint homeostasis and healing processes.
55	Current evidence synthesized by performing several meta-analyses showed positive
56	effects of PRP on lateral epicondylitis and periodontal and sinus bone grafts ^{8,9} , but
57	less favorable outcomes regarding arthroscopic rotator cuff repair, joint arthroplasty,
58	reconstruction of cruciate ligaments, and chronic tendinopathy. ¹⁰⁻¹² Accordingly, the
59	efficacy of PRP likely varies in different pathological conditions and body sites.
60	Research on PRP treatment for articular cartilage lesions has been published since
61	2010. ¹³ The efficacy is of interest to musculoskeletal specialists due to its potential
62	disease modifying and regenerative capability, compared to conventional injection
63	regimens. However, to the best of our knowledge, no meta-analytic research has
64	quantified the effectiveness of PRP treatment and analyzed the factors that modify the
65	outcomes. Therefore, we undertook a systematic review and meta-analysis to
66	investigate the clinical results in patients with knee chondral degenerative lesions,
67	with regard to functional changes, compared to the pretreatment condition, following
68	PRP injections, placebo controls, and HA administration.
69	

71 Methods

72 Study Selection

73	We systematically searched for all relevant articles in 2 online databases,
74	PubMed and Scopus, from the earliest record to September 2013. PubMed is a free
75	database mainly derived from MEDLINE and is considered an optimal tool in
76	biomedical electronic research. Compared with another free access database, Google
77	Scholar, PubMed offers results of better accuracy. We employed Scopus, an online
78	database that covers a wider range of journals, to confirm that all relevant trials were
79	retrieved. ¹⁴ The key terms, including cartilage, knee, osteoarthritis, gonarthrosis,
80	platelet, PRP, and platelet-rich plasma, were entered as medical subject headings and
81	text words for searches. Cochrane Collaboration Central Register of Controlled
82	Clinical Trials, Cochrane Systematic Reviews, Clinical Trials.gov, and bibliographies
83	of included trials and related meta-analyses were manually scrutinized for additional
84	references.
85	
86	The review included randomized controlled trials, quasi-experimental studies,
87	and prospective follow-up studies without language restriction. Case reports without a
88	well-designed intervention scheme or outcome measurement were excluded. Studies
89	were eligible if they enrolled adult participants with knee cartilage degenerative

90	disorders diagnosed through clinical and image findings. Trials presenting data on
91	people with other causes of knee pain such as sprain, tendinopathy, and meniscus tear
92	were ruled out. The included studies were required to use PRP at least in 1 treatment
93	arm. Research was eliminated if PRP was not applied through injection. All of the
94	selected trials were required to have serial functional measurements such as the
95	International Knee Documentation Committee Subjective Knee Form (IKDC), Knee
96	injury and Osteoarthritis Outcome Score (KOOS), or Western Ontario and McMaster
97	Universities Arthritis Index (WOMAC) before and after the administration of PRP.
98	
99	
100	Data Extraction and Quality Assessment
101	Two authors (K.V.C and C.Y. H) independently evaluated all articles eligible for
102	inclusion. The data extracted from the selected studies included patient characteristics,
103	information on PRP administration, and details of outcome measurements. The Jadad

scale was used to assess the quality of the randomized controlled trials. The aggregate

105 scores ranged from 0 to 5 points. Trials with scores less than 3 were assumed to have

- 106 a lower methodological quality.¹⁵ Prospective follow-up and quasi-experimental
- 107 studies were evaluated by using the Newcastle-Ottawa scale to assess the quality of
- 108 selection, comparability, exposure, and outcome. The maximum scores observed were

- 109 9 points and total scores less than 4 points were considered low in quality.¹⁶
- 110 Discrepancies between the 2 independent evaluations for potential articles were
- 111 resolved through discussion and consensus.
- 112

- 114 Data Synthesis and Analysis
- 115 Data were extracted from 3 points at or closest to the 2nd, 6th and 12th month
- 116 following the interventions. Effect sizes were estimated from functional knee joint
- scales and applied to compare the results across studies or between different
- therapeutic approaches. If more than 1 functional scale was available for a study, we
- selected only 1 measurement according to the order of IKDC, KOOS, and then
- 120 WOMAC. Since some studies had multiple treatment arms, we treated each arm as a
- separate data set for analysis. To evaluate the effectiveness of PRP treatment,
- 122 compared with the pre-treatment condition, we used the standardized mean difference
- between the baseline and status following therapy. Data were derived from the ratio of
- 124 the difference between baseline and post-treatment functional scores to the standard
- 125 deviation (SD) of the pooled results. Positive and negative values of the effect sizes
- 126 indicated a functional improvement and decline, respectively. For cases in which the
- 127 functional score SD was deficient, the value was computed from the p value of the

128	corresponding hypothesis testing. The pooled SD resulted from the square root
129	$\{[(participant numbers in baseline - 1)*(standard deviation of scores in baseline)^2 +$
130	(participant numbers after treatment – 1)*(standard deviation of scores after treatment)
131	²]/ [(participant numbers in baseline – 1)+ (participant numbers after treatment –
132	1)]}. ^{16, 17} Because the Pooled SD was calculated based on the rule of intention-to-treat,
133	the dropout rate was not considered and the participant numbers remained unchanged
134	between the baseline and post-treatment data sets.
135	
136	The effect sizes were pooled by using a random effect model and were
137	represented by a point estimate with a 95% confidence interval (CI). Regarding the
138	comparison with the baseline condition, an advantage of PRP referred to a positive
139	summed effect size with a 95% CI above a zero value. In terms of comparison with
140	HA injection or placebo treatment, a superiority of intervention was determined by a
141	higher summed effect size in the intervention group without an overlap of the 95% CI
142	in the comparative group. ¹⁸ The heterogeneity across studies was tested by using I
143	square and Cochran's Q tests. A P value <0.1 for chi-squared testing of the Q statistic
144	or an I square $>50\%$ was regarded as the existence of significant heterogeneity. ¹⁹ We
145	performed a subgroup analysis according to the different dosages, regimens, and
146	preparations of PRP, as well as the severity of knee degenerative lesions. A sensitivity

147	analysis was conducted by removing some studies with extreme effect size values to
148	observe if the action caused serious changes in the overall result. We used a funnel
149	plot and the Begg's test to exam the publication bias, which was defined as the
150	tendency for positive trials to be published and the tendency for negative and null
151	trials not to be published. ²⁰ All analyses were performed by using Stata 10.0
152	(StataCorp, Texas, USA ^a).
153	
154	
155	Results
156	Of the 73 non-duplicate citations identified from the literature, 18 clinical trials
157	were screened for eligibility (Figure 1). One study was excluded due to introducing
158	PRP by performing a miniarthrotomy ²¹ (not by an injection technique), and the other
159	was removed because of inability to extract data from box plots. ²² An assessment of
160	the remaining 16 articles revealed that 8 used a single-arm, open label, and
161	prospective follow-up design. ²³⁻³⁰ Two quasi-experimental studies ^{31, 32} and 4
162	randomized controlled trials compared PRP with HA injections, ³³⁻³⁶ 1 randomized
163	controlled trial compared different doses of PRP with normal saline, ³⁷ and 1

- 164 quasi-experimental trial compared a single-spinning approach of PRP with a
- 165 double-spinning approach.³⁸ The 16 included trials comprised 26 treatment arms, of

- 166 which 18 used PRP treatments, 7 administered HA, and 1 employed saline for placebo
- 167 controls. Regarding knee specific outcome measures, we extracted data from IKDC in
- 168 8, KOOS in 1, and WOMAC in 7 of the 16 studies.
- 169
- 170

171 Characteristics of the included patients (Tables 1 and 2)

- 172 The 16 included studies had a total enrollment of 1543 patients, 840 of whom
- 173 (54.4%) were males. The duration from the onset of knee pain to be registered in each
- trial was listed from 3 months to more than 1 year. The follow-up period ranged from
- 175 6 to 24 months, and the latest point of assessment for most trials was at 12 months
- 176 following PRP injections. Most studies recruited knee OA patients with a severity less
- than grade III on the Kellgren-Lawrence (KL) scale, and some of them also enrolled
- 178 participants affected by cartilage degenerative lesions with a grade of 0 on the KL
- 179 scale.
- 180
- 181

182 Effects of interventions (Figures 2, 3, and 4)

183 Compared with the pre-injection condition, we found a pooled effect size of 2.31

184 (95% CI 1.53, 3.09) at 2 months, 2.52 (95% CI 1.94, 3.09) at 6 months, and 2.88

185	(95% CI 0.97, 4.79) at 12 months, which all favored the status following PRP
186	treatment. If we deleted an outlier with an extremely high effect size, ²⁴ the beneficial
187	effects from PRP injections remained, with an effect size of 1.84 (95% CI 1.53, 3.09)
188	at 2 months, 2.19 (95% CI 1.73, 2.66) at 6 months, and 2.35 (95% CI 0.51, 4.20) at 12
189	months. In the HA group, the effect sizes were 1.15 (95% CI 0.78, 1.52) at 2 months,
190	0.75 (95% CI 0.62, 0.88) at 6 months, and 0.85 (95% CI 0.46, 1.24) at 12 months. A
191	significant superiority of PRP intervention was demonstrated by a higher summed
192	effect size in the PRP group without an overlap of the 95% CI of the HA group at
193	months 2 and 6. In addition, after excluding the data from quasi-experimental and
194	single arm longitudinal follow-up studies and only using the data from randomized
195	controlled trials (Figure 4 and Table 3), the PRP group still demonstrated a
196	significantly higher effect size of 1.55 (95% CI 0.97, 2.12), compared to 0.75 (95% CI
197	0.62, 0.88) in the HA group, at 6 months. Only 1 study used normal saline for placebo
198	controls. The effect sizes were -0.29 (95% CI -0.68, 0.10) at 2 months and -0.48 (95%
199	CI -0.89, -0.07) at 6 months, whose point estimates and 95% CI appeared inferior to
200	the PRP and HA group values.
201	

202

203 Stratified analysis (Table 3)

204	The participants receiving PRP treatments were stratified according to the study
205	design, cycles of centrifugation, kind of activation agents, administration doses, and
206	severity of cartilage degeneration. The point estimate of the pooled effect size in the
207	single arm prospective studies and quasi-experimental trials seemed to be higher than
208	those in the randomized controlled trials, and a significant difference was identified at
209	12 months between the quasi-experimental and randomized controlled trials. The
210	stratified analysis failed to demonstrate a dose-responsiveness relationship in the
211	injection numbers, superiority of double-spinning to single-spinning techniques, and
212	additional activation agents to an activator-free preparation. However, an uncertainty
213	in the treatment effectiveness emerged regarding participants who used equal or fewer
214	than 2 injection doses, a single-spinning approach, or lack of additional activators,
215	since the 95 % CI of the summed effect sizes in these subgroups crossed the value of
216	0 at either of the 3 time points.
217	
218	Eight of the 16 trials, including 9 arms of PRP treatment, divided their
219	participants into 2 or 3 subgroups based on knee OA severity. In the present
220	meta-analysis, KL grade 0, grade I-II, and grade III-IV were defined as degenerative
221	chondropathy, early osteoarthritis, and advanced osteoarthritis, respectively. The
222	degenerative chondropathy group had the highest effect size point estimate at all time

- 223 points, followed by early and advanced osteoarthritis. A significantly better treatment
- 224 effectiveness was identified at 6 months in the degenerative chondropathy group
- 225 (effect size, 3.90, 95% CI, 2.54, 5.26) compared with the advanced osteoarthritis
- 226 group (effect size, 1.59, 95% CI, 0.85, 2.32).
- 227
- 228
- 229 Adverse Effect
- Eight of the 16 trials reported adverse events after injection, most of which were
- local swelling and transient regional pain, and the overall incidence was 9.59% (95%
- CI, 7.79%, 11.32%) per person undergoing 1 PRP treatment cycle. The pooled relative
- risk of adverse reactions following PRP treatment was 1.19 (95% CI, 0.85, 1.66)
- 234 compared with HA administration, indicating no significant difference between the
- 235 regimens in eliciting post-injection discomfort.
- 236
- 237
- 238 **Publication bias (Figure 5)**
- Asymmetry was observed in the funnel plots based on the effect sizes of changes
- 240 in the functional scales from baseline in the PRP group. P values, determined by using
- a Begg's test, were 0.028 at 2 months, 0.017 at 6 months, and 0.84 at 12 months,

242 which indicated the existence of significant publication bias regarding the measured 243 outcome at 2 and 6 months. 244 245 246 Discussion 247 The current meta-analysis comparing PRP injections in patients with knee 248 degenerative pathology, with their pre-treatment condition, showed a continual 249 efficacy for at least 12 months. Compared with HA administration, the PRP group 250 exhibited better and prolonged beneficial effects, and the advantages remained after 251 excluding single arm and quasi-experimental trials. Injection doses equal to or less 252 than 2, the use of a single-spinning approach, and lack of activation agents led to an 253 uncertainty of the treatment effectiveness. Furthermore, patients with a lower degree 254 of cartilage degeneration achieved superior results compared to those with advanced 255 OA. Finally, PRP treatment did not elicit a higher risk of adverse reactions relative to 256 HA administration. 257

Four meta-analytic research articles investigating the efficacy of PRP in the
treatment of orthopedic disorders have been recently published. Krogh et al.
compared a variety of injection therapies against lateral epicondylitis and found that

261	PRP administration was significantly superior to placebo for pain relief. ⁸ Chahal et
262	al. ¹² and Zang et al. ¹⁰ reviewed studies comprising participants with full-thickness
263	rotator cuff tendon tears, who were treated with arthoscopic repair with or without
264	concomitant PRP supplementation, and failed to demonstrate a benefit of additional
265	PRP in reducing overall re-tear rates and improving shoulder-specific outcomes.
266	Sheath et al. compared PRP interventions with controls in various orthopedic
267	conditions such as anterior cruciate ligament reconstruction, spinal fusion, total knee
268	arthroplasty, humeral epicondylitis, and Achilles tendinopathy, and concluded that the
269	available evidence was insufficient to support PRP as a treatment option for
270	orthopedic or soft tissue injuries. ¹¹ To the best of our knowledge, none of these
271	meta-analyses targeted the issue of PRP prescription against knee degenerative lesions.
272	A focused review regarding PRP for the treatment of cartilage pathology has been
273	recently published and did not favor PRP as a first-line treatment for moderate to
274	severe knee OA. ¹³ However, a quantitative analysis in terms of potential symptom
275	relieving and disease modifying effects is still deficient. Therefore, we standardized
276	the functional change from baseline at various time points in an effort to obtain more
277	accurate estimates on the effectiveness of intra-articular PRP injection for the
278	treatment of knee degenerative pathology.

280	Our meta-analysis suggested that PRP injection significantly improved the
281	functional status, relative to basal evaluations, in patients with knee degenerative
282	pathology and the beneficial effect was maintained for 1 year after treatment. The
283	major concern regarding our pooled effective sizes is the overestimation of true values
284	due to a lack of control. Only 1 of the included trials employed saline as a placebo
285	control, whose effect size was -0.29 (95% CI -0.68, 0.10) at 2 months and -0.48 (95%
286	CI -0.89, -0.07) at 6 months. We believed that the estimated effect of saline injection
287	was reliable since it was derived from a double blind, randomized controlled trial. The
288	result implies a gradual functional decline with a significant deterioration identified at
289	6 months following placebo treatment. In contrast, the PRP group revealed a continual
290	improvement until 12 months. Therefore, the present meta-analysis suggests that the
291	effectiveness of PRP derived a biological benefit, which could not simply be
292	explained by a placebo effect.
293	
294	The HA effect size pooled in the present meta-analysis indicated that the
295	efficacy reached a highest point at 2 months after injection, but declined over time.
296	The change in HA efficacy is comparable with previous meta-analytic research
297	despite a greater effect size, ^{5, 39} since we used the patients' baseline as the reference
298	point and included more small uncontrolled trials. Current evidence suggests a modest

299	effect of HA in relieving pain in patients with knee OA probably through the
300	mechanism of viscosupplementation and modulation of the early inflammatory
301	response. ⁶ Compared with the HA group, patients treated by using PRP demonstrated
302	better effectiveness at 2 time points and the trend of improvement was sustained until
303	12 months (Figure 4). The advantage of PRP over HA remained at 6 months even
304	when only the results from randomized controlled trials were analyzed. In-vitro
305	experiments have demonstrated the capability of PRP in the temporary modulation of
306	cytokine levels and stimulation of chondral anabolism, which may lead to short-term
307	pain relief and long-term functional improvement, respectively. ⁴⁰ When comparing
308	the temporal changes in clinical outcomes between the 2 regimens, PRP injections
309	provided a more prompt symptomatic relief than HA. Since the main action of HA
310	derives from the restoration of visicoelasticity of synovial fluid, the prolonged
311	efficacy of PRP might imply a regenerating or disease modifying potential, which has
312	rarely reported in studies using HA preparations.
313	
314	Several factors mentioned by antecedent research might modify the effect of PRP
315	injections. In terms of the study design, the pooled effect sizes in single arm and
316	quasi-experimental studies were likely to be higher than that in randomized controlled
317	trials. As a result, to prevent overestimation of PRP effectiveness, the present

318	meta-analysis also interpreted the comparisons between PRP and HA based on the
319	outcomes from randomized controlled trials. One potential modifier is the
320	centrifugation method. Some authors advocate a double-spinning technique instead of
321	a single-spinning method, because the former might generate a higher platelet
322	concentration and thus result in better efficacy. ³⁸ Another issue is the addition of
323	activation agents, which potentially contribute to an increase in growth factor
324	release. ¹³ Our stratified analysis did not identify a significant discrepancy in
325	effectiveness between groups by using different centrifugation methods or activation
326	agents. However, the use of a single spinning method and lack of activation agents
327	tended to generate an effect size covering the zone of ineffective treatment (Table 3).
328	Regarding the number of PRP injections, a dose-responsiveness relationship was
329	unclear. Likewise, uncertainty of effectiveness existed with doses equal or less than 2,
330	suggesting a minimal requirement of 3 doses during clinical practice. Finally, our
331	subgroup analysis showed that the efficacy varied according to the degenerative
332	severity, which was related to the regenerative potential of damaged cartilage. Our
333	results are compatible with most trials, favoring discriminative usage of PRP in cases
334	with degenerative chondropathy and mild OA.
335	Study limitations

336 Several limitations should be considered in the interpretation of the present

337	meta-analysis. First, most trials retrieved from the electronic database employed a
338	single-arm prospective follow-up design without controls and randomization of the
339	participants. These fundamental flaws rendered the studies low in research quality and
340	level of evidence. Secondly, there was marked heterogeneity across the included
341	studies regarding the PRP preparation and dosage, follow-up duration, and functional
342	outcome assessment scales. Although we tried to compensate for methodological
343	deficiencies by performing a stratified analysis, some results remained inconclusive
344	since several reports lacked the documentation of the key factors mandatory for
345	stratification. Finally, many trials recruited patients with degenerative chondropathy
346	defined as a grade 0 on the KL scale. Without the use of magnetic resonance, the
347	diagnosis of a chondral lesion is difficult, leading these studies to possibly enroll
348	some subjects with knee pain negative for degenerative pathology. In addition,
349	physicians seldom prescribed an injection therapy as the first line of treatment in
350	patients with such an early lesion. Although the degenerative chondropathy group had
351	the most benefit from PRP injections in our subgroup analysis, we suggest that future
352	trials should be conducted to focus on patients with mild to moderate knee OA based
353	on the consideration of clinical utility.

356 Conclusions

357	The present meta-analysis demonstrates a significant functional improvement
358	after PRP intervention in patients with knee cartilage degenerative pathology,
359	compared with their pretreatment baseline, although the interpretation should be
360	cautious due to the low methodology quality of included trials. The effectiveness of
361	PRP is likely superior to HA, with a longer effective duration. Discrepancy in the
362	degenerative severity modified the treatment response, leading the participants with a
363	lower degree of knee degenerative lesions to benefit more from PRP injections. Future
364	studies are suggested to target the population with mild to moderate knee OA based
365	on the consideration of clinical utility.
366	
367	
368	
369	
370	
371	
372	
373	
374	

375 Reference

- 1. Hunter DJ, Felson DT. Osteoarthritis. BMJ 2006;332(7542):639-42.
- 2. Jordan KM, Arden NK, Doherty M, Bannwarth B, Bijlsma JW, Dieppe P et al.
- 378 EULAR Recommendations 2003: an evidence based approach to the management of
- 379 knee osteoarthritis: Report of a Task Force of the Standing Committee for
- 380 International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum
- 381 Dis 2003;62(12):1145-55.
- 382 3. Hameed F, Ihm J. Injectable medications for osteoarthritis. PM R 2012;4(5
- 383 Suppl):S75-81.
- 384 4. Cheng OT, Souzdalnitski D, Vrooman B, Cheng J. Evidence-based knee
- injections for the management of arthritis. Pain Med 2012;13(6):740-53.
- 386 5. Bannuru RR, Natov NS, Obadan IE, Price LL, Schmid CH, McAlindon TE.
- 387 Therapeutic trajectory of hyaluronic acid versus corticosteroids in the treatment of
- 388 knee osteoarthritis: a systematic review and meta-analysis. Arthritis Rheum
- 389 2009;61(12):1704-11.
- 390 6. Rutjes AW, Juni P, da Costa BR, Trelle S, Nuesch E, Reichenbach S.
- 391 Viscosupplementation for osteoarthritis of the knee: a systematic review and
- 392 meta-analysis. Ann Intern Med 2012;157(3):180-91.
- 393 7. Nguyen RT, Borg-Stein J, McInnis K. Applications of platelet-rich plasma in

- 394 musculoskeletal and sports medicine: an evidence-based approach. PM R
- 395 2011;3(3):226-50.
- 396 8. Krogh TP, Bartels EM, Ellingsen T, Stengaard-Pedersen K, Buchbinder R,
- 397 Fredberg U et al. Comparative effectiveness of injection therapies in lateral
- 398 epicondylitis: a systematic review and network meta-analysis of randomized
- 399 controlled trials. Am J Sports Med 2012;41(6):1435-46.
- 400 9. Del Fabbro M, Bortolin M, Taschieri S, Weinstein R. Is platelet concentrate
- 401 advantageous for the surgical treatment of periodontal diseases? A systematic review
- 402 and meta-analysis. J Periodontol 2011;82(8):1100-11.
- 403 10. Zhang Q, Ge H, Zhou J, Cheng B. Are Platelet-Rich Products Necessary during
- 404 the Arthroscopic Repair of Full-Thickness Rotator Cuff Tears: A Meta-Analysis. PLoS
- 405 One 2013;8(7):e69731.
- 406 11. Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E et al. Efficacy
- 407 of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J
- 408 Bone Joint Surg Am 2012;94(4):298-307.
- 409 12. Chahal J, Van Thiel GS, Mall N, Heard W, Bach BR, Cole BJ et al. The role of
- 410 platelet-rich plasma in arthroscopic rotator cuff repair: a systematic review with
- 411 quantitative synthesis. Arthroscopy 2012;28(11):1718-27.
- 412 13. Kon E, Filardo G, Matteo BD, Marcacci M. PRP For the Treatment of Cartilage

- 413 Pathology. Open Orthop J 2013;7:120-8.
- 414 14. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed,
- 415 Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J
- 416 2008;22(2):338-42.
- 417 15. Chang KV, Chen SY, Chen WS, Tu YK, Chien KL. Comparative effectiveness of
- 418 focused shock wave therapy of different intensity levels and radial shock wave
- 419 therapy for treating plantar fasciitis: a systematic review and network meta-analysis.
- 420 Arch Phys Med Rehabil 2012;93(7):1259-68.
- 421 16. Chang KV, Hsiao MY, Chen WS, Wang TG, Chien KL. Effectiveness of
- 422 intra-articular hyaluronic acid for ankle osteoarthritis treatment: a systematic review
- 423 and meta-analysis. Arch Phys Med Rehabil 2013;94(5):951-60.
- 424 17. Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in
- 425 treatment of knee osteoarthritis: a meta-analysis. JAMA 2003;290(23):3115-21.
- 426 18. Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS. Effectiveness of
- 427 Bisphosphonate Analogues and Functional Electrical Stimulation on
- 428 Attenuating Post-Injury Osteoporosis in Spinal Cord Injury Patients- a Systematic
- 429 Review and Meta-analysis. PLoS One 2013;. In Press. .
- 430 19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
- 431 meta-analyses. BMJ 2003;327(7414):557-60.

- 432 20. Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res
- 433 1993;2(2):121-45.
- 434 21. Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D
- 435 et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma
- 436 gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol
- 437 Arthrosc 2011;19(4):536-42.
- 438 22. Sanchez M, Anitua E, Azofra J, Aguirre JJ, Andia I. Intra-articular injection of an
- 439 autologous preparation rich in growth factors for the treatment of knee OA: a
- 440 retrospective cohort study. Clin Exp Rheumatol 2008;26(5):910-3.
- 441 23. Kon E, Buda R, Filardo G, Di Martino A, Timoncini A, Cenacchi A et al.
- 442 Platelet-rich plasma: intra-articular knee injections produced favorable results on
- 443 degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc
- 444 2010;18(4):472-9.
- 445 24. Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A et al.
- 446 Platelet-rich plasma intra-articular knee injections for the treatment of degenerative
- 447 cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc
- 448 2011;19(4):528-35.
- 449 25. Sampson S, Reed M, Silvers H, Meng M, Mandelbaum B. Injection of
- 450 platelet-rich plasma in patients with primary and secondary knee osteoarthritis: a pilot

- 451 study. Am J Phys Med Rehabil 2011;89(12):961-9.
- 452 26. Wang-Saegusa A, Cugat R, Ares O, Seijas R, Cusco X, Garcia-Balletbo M.
- 453 Infiltration of plasma rich in growth factors for osteoarthritis of the knee short-term
- 454 effects on function and quality of life. Arch Orthop Trauma Surg 2011;131(3):311-7.
- 455 27. Gobbi A, Karnatzikos G, Mahajan V, Malchira S. Platelet-rich plasma treatment
- 456 in symptomatic patients with knee osteoarthritis: preliminary results in a group of
- 457 active patients. Sports Health 2012;4(2):162-72.
- 458 28. Napolitano M, Matera S, Bossio M, Crescibene A, Costabile E, Almolla J et al.
- 459 Autologous platelet gel for tissue regeneration in degenerative disorders of the knee.
- 460 Blood Transfus 2012;10(1):72-7.
- 461 29. Halpern B, Chaudhury S, Rodeo SA, Hayter C, Bogner E, Potter HG et al.
- 462 Clinical and MRI outcomes after platelet-rich plasma treatment for knee osteoarthritis.
- 463 Clin J Sport Med 2013;23(3):238-9.
- 464 30. Jang SJ, Kim JD, Cha SS. Platelet-rich plasma (PRP) injections as an effective
- 465 treatment for early osteoarthritis. Eur J Orthop Surg Traumatol 2013;23(5):573-80.
- 466 31. Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A et al.
- 467 Platelet-rich plasma intra-articular injection versus hyaluronic acid
- 468 viscosupplementation as treatments for cartilage pathology: from early degeneration
- 469 to osteoarthritis. Arthroscopy 2011;27(11):1490-501.

470 32. Spakova T, Rosocha J, Lacko M, Harvanova D, Gharaibeh A. Treatment	of kne	e
--	--------	---

- 471 joint osteoarthritis with autologous platelet-rich plasma in comparison with
- 472 hyaluronic acid. Am J Phys Med Rehabil 2012;91(5):411-7.
- 473 33. Li M, Zhang C, Ai Z, Yuan T, Feng Y, Jia W. [Therapeutic effectiveness of
- 474 intra-knee-articular injection of platelet-rich plasma on knee articular cartilage
- 475 degeneration]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011;25(10):1192-6.
- 476 34. Cerza F, Carni S, Carcangiu A, Di Vavo I, Schiavilla V, Pecora A et al.
- 477 Comparison between hyaluronic acid and platelet-rich plasma, intra-articular
- 478 infiltration in the treatment of gonarthrosis. Am J Sports Med 2012;40(12):2822-7.
- 479 35. Filardo G, Kon E, Di Martino A, Di Matteo B, Merli ML, Cenacchi A et al.
- 480 Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study
- 481 design and preliminary results of a randomized controlled trial. BMC Musculoskelet
- 482 Disord 2012;13:229.
- 483 36. Sanchez M, Fiz N, Azofra J, Usabiaga J, Aduriz Recalde E, Garcia Gutierrez A et
- 484 al. A randomized clinical trial evaluating plasma rich in growth factors
- 485 (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic
- 486 knee osteoarthritis. Arthroscopy 2012;28(8):1070-8.
- 487 37. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with
- 488 platelet-rich plasma is more effective than placebo for knee osteoarthritis: a

- 489 prospective, double-blind, randomized trial. Am J Sports Med 2013;41(2):356-64.
- 490 38. Filardo G, Kon E, Pereira Ruiz MT, Vaccaro F, Guitaldi R, Di Martino A et al.
- 491 Platelet-rich plasma intra-articular injections for cartilage degeneration and
- 492 osteoarthritis: single- versus double-spinning approach. Knee Surg Sports Traumatol
- 493 Arthrosc 2012;20(10):2082-91.
- 494 39. Wang CT, Lin J, Chang CJ, Lin YT, Hou SM. Therapeutic effects of hyaluronic
- 495 acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials. J
- 496 Bone Joint Surg Am 2004;86-A(3):538-45.
- 497 40. van Buul GM, Koevoet WL, Kops N, Bos PK, Verhaar JA, Weinans H et al.
- 498 Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic
- 499 chondrocytes. Am J Sports Med 2011;39(11):2362-70.

501	Figure Legends
502	
503	Figure 1. Flow diagram of the evaluation process for the inclusion or exclusion of
504	studies.
505	
506	Figure 2. Forest plot of the effect sizes (ES) of functional changes from baseline at (A)
507	2, (B) 6, and (C) 12 months following PRP injections.
508	
509	Figure 3. Forest plot of the effect sizes (ES) of functional changes from baseline
510	following HA injections.
511	
512	Figure 4. Temporal relationships of effect sizes of functional changes following PRP,
513	HA, and placebo injections. We also analyzed the treatment arm only
514	comprising randomized controlled trials (RCT) of PRP interventions.
515	
516	Figure 5. Funnel plots of the effective size of functional changes from baseline at (A)
517	2, (B) 6, and (C) 12 months following PRP injections.

Author, year	Enrolled sample	Average age, years	Disease	Double	Intention-to	Outcome measure	Follow-up	Adverse event	Quality
	number		duration	blind	-treat	<u>_</u>	timing		assessment
					analysis				
Single arm pro	spective follow-up s	tudies							
Halpern et al,	22, (17 M, 5 F)	54.7	Averaged	No	No	VAS, WOMAC	1 week, 1,	Not mentioned	4†
2013			14 months				3, 6, 12		
							months		
Jang et al,	65 (12 M, 53 F)	59.7 (32-85)	Not	No	Yes	IKDC, VAS	1, 3, 6, 9,	Mild swelling or	4†
2013			mentioned				12 months	pain in 41 patients.	
								Mild local heat in 7	
								patients	
Gobbi et al,	50 (31 M, 19 F)	47.7 ± 5.2	Not	No	Yes	IKDC, KOOS, Marx,	6, 12	Nil	4†
2012			mentioned			Tegner, VAS	months		
Napolitano et	27 (21 M, 6 F)	Arthritis group (n=13):	More than	No	Not	NRS, WOMAC	1,6	Nil	4†
al, 2012		64 ± 11 ; cartilage	1 year		mentioned		months		
		disease group (n=14):							
		26.2 ± 2							
Filardo et al,	90 (57 M, 33 F)	50 ± 14	At least 4	No	No	IKDC, VAS	2, 6, 12, 24	Pain with swelling in	4†
2011			months				months	one patient	
Sampson et al,	14 (12 M, 2 F)	51.8 (18-87)	At least 3	No	No	VAS, KOOS,	2, 5, 11,	Moderate pain in one	4†
2011			months			ultrasound measured	18, 52	patient	
						cartilage thickness	weeks		
Wang-Saegusa	261 (152 M, 109	48.4 ± 16.7	At least 3	No	Not	Lequesne index,	6 months	Nil	4†
et al, 2011	F)		months		mentioned	SF-36, VAS,			
						WOMAC			
Kon et al,	91 (57 M, 34 F at	47 (24-82)	At least 4	No	No	IKDC	2, 6, 12	Pain with swelling in	4†
2010	follow-up)		months				months	one patient	

Table 1. Summary of studies using platelet-rich plasma injection to treat chondral degenerative lesions in knee joints

Quasi-experimental studies

Filardo et al,	144	Single spinning PRP	At least 4	No	Not	IKDC, KOOS, VAS	2, 6, 12	Nil	5†
2012	(single-spinning	group: 53.8 ± 14.9 ,	months		mentioned		months		
	PRP group: 52 M,	double-spinning PRP				A			
	20 F;	group: 50.3 ± 14.4							
	double-spinning								
	PRP group: 43 M,								
	29 F)								
Spakova et al,	120 (PRP group:	PRP group: 52.8 \pm	At least 12	No	Not	NRS, WOMAC	3, 6	Temporary mild	5†
2012	33 M, 27 F; HA	12.4; HA group: 53.2 \pm	months		mentioned 👗		months	worsening of knee	
	group: 31 M, 29	14.5				\mathcal{D}^{*}		pain after PRP	
	F)							injections in 6 cases	
Kon et al,	150 (PRP group:	PRP group: 50.6 \pm	At least 4	No	Not	IKDC, VAS	2,6	Nil	5†
2011	30 M, 20 F;	13.8; LWHA group:	months		mentioned		months		
	LWHA group: 27	53.2 ± 13 ; HWHA 54.9							
	M, 23 F; HWHA	± 12.6							
	group: 25M, 25 F)								
Randomized co	ntrolled trials								
Patel et al,	74 (single PRP	Single PRP injection	Not	Yes	No	VAS, WOMAC	6 weeks, 3,	Post-injective pain in	5*
2013	injection group:	group: 53.1 ± 11.6;	mentioned				6 months	4 patients in the	
	10 M, 16 F;	double PRP injections						single PRP injection	
	double PRP	group: 51.6 ± 9.2;	\mathbf{C}					group and in 3	
	injections group:	normal saline group:						patients in the	
	5 M, 20 F; normal	53.7 ± 8.2						double PRP injection	
	saline group: 6 M,							group	
	17 F)	7							
Cerza et al,	120 (PRP group:	PRP group: 66.5 ± 1.3 ;	Not	No	Yes	WOMAC	1, 3, 12	Nil	2*
2012	25 M, 35 F; HA	HA group: 66.2 ± 10.6	mentioned				months		
	group 28 M, 32 F)								

Filardo et al,	109 (PRP group	PRP group: 55; HA	At least 4	Yes	Yes	IKDC, KOOS,	2, 6, 12	A significantly	5*
2012	37 M, 17 F; HA	group 58	months			Tegner, VAS	months	higher post-injective	
	group 31 M, 24 F)							pain reaction was	
						A		observed in the	
								PRP group	
Sanchez et al,	176 (PRP group:	PRP group: 60.5 ± 7.9 ;	Not	Yes	Yes	WOMAC	1, 2, 6	Mild adverse event	5*
2012	43 M, 46 F; HA	HA group: 58.9 ± 8.2	mentioned				months	(26 in PRP group; 24	
	group: 42 M, 45							in HA group)	
	F)								
Li Ming, 2011	30 (PRP group: 6	PRP group: 57.6	At least 4	Not	Yes	IKDC, Lequesne	3, 4, 6	Pain, swelling and	2*
	M, 9 F, HA group:	(36-76); HA group:	months	mentioned		index, WOMAC	months	limited range (12 in	
	7 M, 8 F)	58.2 (39-76)						PRP group and 12 in	
								HA group)	

Note: * indicated that the quality scores derived from the Jadad scale. † indicated that the quality scores derived from the Newcastle-Ottawa Scale. Abbreviation: M, male; F, female; PRP, platelet-rich plasma; HA, hyaluronic acid; LWHA, low-molecular weight hyaluronic acid; HWHA, high-molecular weight hyaluronic aicd; IKDC, International Knee Documentation Committee Subjective Knee Form; KOOS, Knee Injury and Osteoarthritis Outcome Score; NRS, numeric rating scale; SF-36, 36-item short-form health survey; VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities Arthritis Index.

Author, year	Total	Volume per	Interval of	Centrifugation time	Activation agent	Comparison
	injection dose	dose (mL)	injection		<u>_</u>	
Single arm prospective for	ollow-up studies					
Halpern et al, 2013	1	6	NA	Not mentioned	Not mentioned	Nil
Jang et al, 2013	1	3	NA	Not mentioned	Not mentioned	Nil
Gobbi et al, 2012	2	4	1 month	1 centrifugation, 3500 rpm for 9 minutes	Nil	Nil
Napolitano et al, 2012	3	5	1 week	1 centrifugation, 3100 rpm for 8 minutes	Calcium gluconate	Nil
Filardo et al, 2011	3	5	3 weeks	2 centrifugations: 1800 rpm for 15 minutes and	Calcium chloride	Nil
				3500 rpm for 10 minutes		
Sampson et al, 2011	3	6	4 weeks	1 centrifugation for 15 minutes	Calcium chloride	Nil
Wang-Saegusa et al,	3	5	2 weeks	1 centrifugation, 1800 rpm for 8 minutes	Calcium chloride	Nil
2011						
Kon et al, 2010	3	5	3 weeks	2 centrifugations, the first: 1800 rpm for 15	Calcium chloride	Nil
				minutes; the second: 3500 rpm for 10 minutes		
Randomized controlled t	rials or quasi-exp	erimental stud	ies			
Patel et al, 2013	1 in group A, 2	8	3 weeks in	1 centrifugation, 1500 rpm for 15 minutes	Calcium chloride	Group A: single PRP injection; group
	in group B		group B			B: double PRP injections; group C:
						single normal saline injection
Cerza et al, 2012	4	5.5	1 week	Not mentioned	Not mentioned	HA (Hyalgan; Fidia, Abano Terme,
			Ċ			Italy)
Filardo et al, 2012	3	5	1 week	2 centrifugations, the first: 1480 rpm for 6	Not mentioned	HA (Hyalubrix; Fidia, Abano Terme,
				minutes; the second: 3400 rpm for 15 minutes		Italy)
Filardo et al, 2012	3	5	3 weeks	Single-spinning group: 1 centrifugation for 8	Calcium chloride	Single-spinning vs. double spinning
				minutes; double-spinning group: 2		
				centrifugations, 1800 rpm for 15 minutes and		
				3500 rpm for 10 minutes		
Sanchez et al, 2012	3	2	1 week	1 centrifugation for 8 minutes	Calcium chloride	HA (Euflexxa; Copenhagen,

Table 2. Summary of the preparations and injection details of platelet-rich plasma in the retrieved trials

						Denmark)
Spakova et al, 2012	3	3	1 week	3 centrifugations, 3200 rpm for 15 minutes,	Nil	HA (Erectus; CSC Pharmaceuticals
				1500 rpm for 10 minutes and 3200 rpm for 10		Handels GmbH)
				minutes	A	
Kon et al, 2011	3	5	2	2 centrifugations,1480 rpm for 6 minutes and	Calcium chloride	HWHA (molecular weight 1000 to
				3400 rpm for 15 minutes		2900 kDa) and LWHA (molecular
						weight 500 to 730 kDa)
Li Ming, 2011	3	4	3 weeks	2 centrifugations, both 2000 rpm for 10 minutes	Calcium chloride	HA (1500-2500 kDa)

Note: Abbreviation: NA, Not applicable; rpm, revolutions per minute; PRP, platelet-rich plasma; HA, hyaluronic acid; LWHA, low-molecular weight hyaluronic acid; HWHA, high-molecular weight hyaluronic acid

,atelet-rich ,

Table 3. Analysis of the effect sizes of platelet-rich plasma treatment stratified by their study design, dose of injection, cycle of centrifugation,

Subgroup	Pooled effect size at month 2	Pooled effect size at month 6	Pooled effect size at month 12
Study design			
Single-arm follow-up study	2.65 (0.55, 4.75)	3.02 (1.99, 4.06)	2.64 (-0.44, 5.71) [#]
Quasi-experimental study	2.84 (1.48, 4.19)	3.08 (1.36, 3.81)	4.55 (4.11, 4.98) ^a
Randomized controlled trial	1.59 (1.09, 2.09)	1.55 (0.97, 2.12)	$0.86 (0.47, 1.25)^{a}$
Dose of PRP administrations			
Four	2.38 (1.89, 2.87)	3.00 (2.49, 3.51)	Nil
Three	2.70 (1.68, 3.72)	2.59 (1.83, 3.35)	3.54 (1.43, 5.65)
Two	1.69 (1.24, 2.14)	3.39 (-0.63, 7.42) [#]	5.71 (4.95, 6.47)
One	0.71 (-0.83, 2.26)#	1.73 (0.50, 2.97)	-0.40 (-3.39, 2.59) [#]
Cycle of centrifugation		\checkmark	
One	1.53 (0.51, 2.56)	2.28 (1.69, 2.88)	2.71 (-0.95, 6.37) [#]
Two	3.22 (1.58, 4.85)	3.21 (1.44, 4.99)	3.50 (0.37, 6.64)
Three	1.58 (1.19, 1.97)	1.29 (0.90, 1.68)	Nil
Not mentioned	2.38 (1.89, 2.87)	1.98 (-0.04, 4.00)#	1.13 (0.42, 1.84)
Additional activation agent	C ,		
Calcium chloride	3.00 (1.78, 4.23)	2.68 (1.85, 3.50)	4.24 (2.75, 5.75)
Calcium gluconate	1.74 (1.32, 2.17)	2.42 (1.66, 3.18)	Nil
Nil	0.75 (-0.87, 2.37)#	3.11 (1.37, 4.85)	1.89 (-5.59, 9.37) [#]
Not mentioned	1.64 (0.21, 3.07)	1.60 (0.20, 2.99)	0.92 (0.58, 1.27)

additional activation agent and severity of degenerative pathology.

Severity of degeneration		À	
Degenerative chondropathy	3.34 (1.64, 5.04)	3.90 (2.54, 5.26) ^b	3.41(0.86, 5.96)
Early osteoarthritis	2.23 (1.51, 2.94)	2.37 (1.96, 2.78)	1.60 (0.11, 3.08)
Advanced osteoarthritis	1.58 (1.08, 2.08)	1.59 (0.85, 2.32) ^b	0.96(0.13, 1.80)

Note: The values were expressed by their point estimates with a 95% confidence interval. "a" indicated significant difference of the effect size at 12 months between the quasi-experimental studies and randomized controlled trials. "b" indicated significant difference of the effect size at 6 months between degenerative chondropathy and advanced osteoarthritis. "#" indicated that the 95% confidence interval covered a zero value, which implied an uncertainty of treatment effectiveness compared with the pretreatment baseline. Abbreviation: PRP, platelet-rich plasma. red x.

PRISMA 2009 Flow Diagram

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

the second second

when when a second seco

